UNIT-2

Set Theory
Set: A setiscollection of well defined objects.

In the above definition the words set and collection for all practical purposes are Synonymous. We have redly
used the word set to define itself.

Each of the objectsin the set is called a member of an element of the set. The objects themsel ves can be almost
anything. Books, cities, numbers, animals, flowers, etc. Elements of a set are usually denoted by lower-case
letters. While sets are denoted by capital letters of English larguage.

The symbol € indicates the membership in a set.

If “aisan element of the set A”, then we write a € A.

The symbol € is read “is a member of ” or “is an element of .

The symbol ¢ isused to indicate that an object is not in the given set.

The symbol ¢ is read “is not a member of ” or “is not an element of .

If xisnot an element of the set A then wewritex ¢ A.

Subset:

A set Aisasubset of the set B if and only if every element of A isalso an element of B. We also say that Ais
contained in B, and use the notation A < B.

Proper Subset:

A set Ais called proper subset of the set B. If (i) Aissubset of B and (ii) Bisnot asubset Ai.e.,, Aissaid to be
a proper subset of B if every element of A belongs to the set B, but there is atleast one element of B, which is
notin A. If Aisaproper subset of B, then we denoteit by A < B.

Super set: If Aissubset of B, then B is called a superset of A.

Null set: The set with no elementsis called an empty set or null set. A Null set is designated by the symbol ¢ .
The null setisasubset of every set, i.e, If Aisany setthen ¢ A

Universal set:
In many discussions al the sets are considered to be subsets of one particular set. This set is caled the
universal set for that discussion. The Universal set is often designated by the script letter £z. Universal set in

not unigue and it may change from one discussion to another.

Power set:
The set of all subsets of aset A iscalled the power set of A.
The power set of A isdenoted by P (A). If A hasn elementsinit, then P (A) has 2» elements:

Digoint sets:
Two sets are said to be digoint if they have no element in common.

Union of two sets:
The union of two sets A and B is the set whose elements are all of the elementsin A or in B or in both. The
union of sets A and B denoted by AU B is read as “A union B”.

I nter section of two sets;
The intersection of two sets A and B is the set whose elements are all of the elements common to both A and B.

The intersection of the sets of “A” and “B” is denoted by A[] B and is read as “A intersection B”

Difference of sets:
If A and B are subsets of the universal set U, then the relative complement of B in Aisthe set of all elementsin
AwhicharenotinA. Itisdenoted by A—Bthus: A-B={x|x€ Aand x¢ B}
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Complement of a set:

If U isauniversal set containing the set A, then U — A is called the complement of A. It is denoted by A . Thus
Al={x xgA}

Inclusion-Exclusion Principle:

The inclusion—exclusion principle is a counting technique which generalizes the familiar method of obtaining
the number of elements in the unionof two finite sets, symbolically expressed as

IA U B|=|A|+|B|-|A N B

A B

Fig.Venn diagram showing the
union of sets A and B
where A and B are two finite sets and |S| indicates the cardinality of a set S (which may be considered as the
number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of
the two sets may be too large since some elements may be counted twice. The double-counted elements are
those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.

The principleis more clearly seen in the case of three sets, which for the sets A, B and C is given by
|A U BUBC|=|A|+ B]+ [C|-|ANBI-|C NB|—|A N CHA NBNC|.
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Fig.Inclusion-exclusion illustrated by a

Venn diagram for three sets

This formula can be verified by counting how many times each region in the Venn diagram figure is included
in the right-hand side of the formula. In this case, when removing the contributions of over-counted elements,
the number of elementsin the mutual intersection of the three sets has been subtracted too often, so must be
added back in to get the correct total.

Ingeneral, Let Al, - - -, Ap befinite subsets of aset U. Then,
ArUa U Uy = D lal= D[4, Nayl+
l=isp l=iy <z =p
Z. |A|| ﬁAlg ﬁa"l|3|—--~+(—1}'ﬂ_l |A|ﬂA2ﬁ"‘ﬁA9|r
l=iy iy =iy =p

Example: How many natural numbers n < 1000 are not divisible by any of 2, 3?
Ans. LetA,={n€N|n<1000,2n} and Az={n €N |n<1000, 3|n}.
Then, |A, U Az| = |A| + |As] — |A2 N Agl =500 + 333 — 166 = 667.
So, the required answer is 1000 — 667 = 333.
Example: How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7?
Ans. Forie{23 5 7}, e Ai={neN|n<10000, in}.
Therefore, the required answer is 10000 — |A, U Az U As U A4| = 2285.

www.Jntufastupdates.com 2
45



Relations
Definition: Any set of ordered pairs defines a binary relation.

We shal call a binary relation smply a relation. Binary relations represent
relationships between elements of two sets. If Risareation, a particular ordered pair, say (X,

y) € R can be written as xRy and can be read as “xisinrelation Rtoy”.

Example: Give an example of arelation.
Solution: The relation “greater than” for real numbers is denoted by > . If x and y are any

two real numbers such that x >y, then we say that (x, y) e>. Thustherelation > is{ } >= (X,

y) : xand y arereal numbersand x > y
Example: Define arelation between two sets A = {5, 6, 7} and B = {Xx, y}.

Solution: If A= {5, 6, 7} and B ={X, y}, then the subset R={(5, X), (5, ¥), (6, X), (6,y)} isa
relation from A to B.

Definition: Let Sbe any relation. The domain of the relation Sis defined as the set of all first
elements of the ordered pairs that belong to Sand is denoted by D(S).

D(S) = { x:(x,y) €S for somey}

Therange of the relation Sis defined as the set of all second elements of the ordered pairs that
belong to Sand is denoted by R(S).

RO ={y:(xy) €S for somex}

Example A={2, 3,4} and B={3, 4,5, 6, 7}. Define arelation from Ato B by (a, b) eRif a

dividesb.
Solution: We obtain R={(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}.

Domain of R={2, 3, 4} and range of R={3, 4, 6}.
Propertiesof Binary Relationsin a Set

A relation Ron aset X issaid to be
Reflexive relation if xRx or (X, X) eR, VX e X

Symmetric relation if XRy then yRX, VX, y € X
Transitiverelation if xRy and yRz then xRz, ¥, y, z e X

Irreflexive relation if xRxor (X, X) ¢ R, I’k e X
e Antisymmetric relation if for every x and y in X, whenever xRy and yRx, then x =y.

Examples: (i). If Ry ={(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} beardationon A={1, 2, 3}, then Ry is
areflexive relation, since for every x € A, (X, X) € Ry.

@i). f R ={(1, 1), (1, 2), (2, 3), (3, 3)} beareationon A={1, 2, 3}, then Ry isnot areflexive
relation, sincefor every 2 €A, (2, 2) ¢ Ro.

(iii). If R3={(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1)} bearelationon A={1, 2, 3}, then Rz isa
symmetric relation.
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(iv). T Rg={(1, 2), (2, 2), (2, 3)} on A={1, 2, 3} isan antisymmetric.

Example: Given S={1, 2, ..., 10} and arelation Ron S where R = {(x, y)| x + y = 10}.
What are the properties of the relation R?

Solution: Given that
S={1,2, ..., 10}

e ={(x,y)| x+y=10}
e ={(1,9),(9,1),(28),(8,2),(3,7),(7,3),(4,6), (6,4, (5 9.

(). Forany x e Sand (x, X) ¢R. Here, 1 eSbhut (1, 1) ¢R.
>therelation Risnot reflexive. It isalso not irreflexive, since (5, 5) e R.
(i).(1,99eR=(9,1) eR

(2,8) eR=>(8,2) eRr.....
=>therelation is symmetric, but it is not antisymmetric. (iii). (1,9) eRand (9, 1) eR
=>(1,1 ¢R

= Therelation Ris not transitive. Hence, Ris symmetric.

Relation Matrix and the Graph of a Relation

Relation Matrix: A relation R from a finite set X to afinite set Y can be repre-sented by a matrix
is called therelation matrix of R.

Let X = {X1, X2, ..., Xm} and Y = {y1, V2, ..., Y¥n} be finite sets containing m and n elements,
respectively, and R be the relation from A to B. Then R can be represented by an m x n matrix

MR = [rjj ], which is defined as follows: [ if (x,,y,)eR
ijTlo, i (x.y)eR

Example. Let A={1, 2, 3, 4} and B = {by, by, bz}. Consider therelation R = {(1, by), (1, b3), (3,
by), (4, by), (4, b3)}. Determine the matrix of the relation.
Solution: A={1, 2, 3, 4}, B={by, by, b3}.

Relation R={(1, by), (1, bg), (3, by), (4, b), (4, b3)}.
Matrix of therelation Ris written as
01

0
That isMR = 0

1

o
R O O Bk
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Example: Let A={1, 2, 3, 4}. Find therelation R on A determined by the matrix
1 010

0010
1000
1101

Solution: The rdlation R={(1, 1), (1, 3), (2, 3), (3, 1), (4, 1), (4, 2), (4, 4)}.

MR =

Propertiesof arelation in a set:
(i). If arelation isreflexive, then all the diagonal entries must be 1.

(ii). If arelation is symmetric, then the relation matrix is symmetric, i.e., rjj = rj for every i and j.
(iii). If arelation is antisymmetric, then its matrix is such that if rj; = 1 then rj; = 0 for i =/j.

Graph of a Relation: A relation can also be represented pictorially by drawing its graph. Let R
be ardation in aset X = {x1, X2, ..., Xm}. The elements of X are represented by points or circles

called nodes. These nodes are called vertices. If (x;, X ) € R, then we connect the nodes x; and x;

by means of an arc and put an arrow on the arc in the direction from x; to xj . Thisis called an
edge. If al the nodes corresponding to the ordered pairs in R are connected by arcs with proper
arrows, then we get a graph of the relation R.

Note: (i). If xiRx; and Xj Rx;, then we draw two arcs between x; and xj with arrows pointing in
both directions.

(i1). If xjRxj, then we get an arc which starts from node x; and returns to node ;. Thisarcis called
aloop.

Properties of relations:

(). If arelation is reflexive, then there must be a loop at each node. On the other hand, if the
relation isirreflexive, then thereisno loop at any node.

(i1). If arelation is symmetric and if one node is connected to another, then there must be areturn
arc from the second node to the first.

(ii1). For antisymmetric relations, no such direct return path should exist.

(iv). If arelation istrangitive, the situation is not so ssimple.

Example: Let X ={1, 2, 3, 4} and R={(X, y)| x> y}. Draw the graph of R and aso give its matrix.
Solution: R={(4, 1), (4, 3), (4, 2), (3, 1), (3, 2), (2, 1)}.
The graph of R and the matrix of Rare

1 . 2
3 4
Graph of R
0000
1000
MR =
1100
1110
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Partition and Covering of a Set
Let Sbeagivensetand A={A1, Ao, - - -, Am} Whereeach Aj,i =1, 2, - - -, misasubset of Sand

m

UA=s

i=

Then the set A is called a covering of S, and the sets Ay, A, - - -, Am are said to cover S If, in

addition, the elements of A, which are subsets of S are mutually digoint, then A is called a
partition of S and the sets A, Ap, - - -, Am are called the blocks of the partition.

Example: Let S={a, b, c} and consider the following collections of subsetsof S. A ={{a, b}, {b,
ci}, B={{a}, {a,c}}, C={{a}, {b, c}}, D={{a b, c}}, E={{a}, {b}, {c}}, and F = {{a}, {a, b}, {a,

c}}. Which of the above sets are covering?

Solution: Thesets A, C, D, E, F are covering of S. But, the set B is not covering of S since their
unionisnot S

Example: Let S={a, b, c} and consider the following collections of subsets of S. A ={{a, b}, {b,
ci}, B={{a}, {b, c}}, C={{a b, c}}, D ={{a}, {b}, {c}}, and E= {{a}, {a, c}}.

Which of the above sets are covering?

Solution: The sets B, C and D are partitions of Sand also they are covering. Hence, every partition
isacovering.

The set Aisacovering, but it isnot a partition of a set, since the sets {a, b} and {b, c} are not
disoint. Hence, every covering need not be a partition.

The set E is not partition, since the union of the subsetsis not S The partition C has one block and
the partition D has three blocks.

Example: List of al ordered partitions S={a, b, c, d} of type (1, 2, 2).

Solution:
({a}, {b}, {c, d}), ({b}, {a}, {c, d})
({a}, {c}, {b, d}), ({c}, {a}, {b, d})
({a}, {d}, {b, c}), ({d}, {a}, {b, c})
({b}, {c}, {a d}), ({c}, {b}, {a d})
({b}, {d}, {a, c}), ({d}, {b}, {a,c})
({c}, {d}, {a, b}), ({d}, {c}, {a, b}).

Equivalence Relations
A relation Rin aset X is called an equivalence relation if it isreflexive, symmetric and transitive.
The following are some examples of equivalence relations:

1.Equality of numbers on a set of real numbers.

2. Equality of subsets of auniversal set.

Example: Let X={1, 2, 3,4} and R=={(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)}.
Prove that R is an equivalence relation.
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1 00 1
011 O
MR =

01 1 01

1 00 1
R .f_" A,
‘r"'- L8 o
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The corresponding graph of Ris shown in figure; ™

Clearly, therelation Ris reflexive, symmetric and transitive. Hence, Ris an equivalence relation.
Example Let X={1, 2, 3, ..., 7} and R=(X, y)| x — y isdivisible by 3. Show that R isan
equivalence relation.

Solution: (). Forany x € X, x — x=0isdivisible by 3.

" XRX

> Risreflexive.
(i). For any x, y € X, if xRy, then x — yisdivisible by 3.

=>—(x —y)isdivisibleby 3.

>y —xisdivisbleby 3.

=>YRX

Thus, therelation R is symmetric.
(iii). For any x, y, Z € X, let xRy and yRz.

>(X—y) +(y—2isdivisbleby 3

=>x —zisdivisbleby 3

>xRz

Hence, therelation Ristransitive.

Thus, the relation R is an equivalence relation.
Congruence Relation: Let | denote the set of al positive integers, and let m be apositive integer.
Forxelandy €1, defineRasR= {(X, y)| x — yisdivisbleby m}
The statement ”X — y isdivisible by m” is equivalent to the statement that both X and y have the
same remainder when each is divided by m.
In this case, denote R by = and to write XRy as x =y (mod m), which is read as ”x equalstoy
modulo m”. The relation = is called a congruence relation.
Example: 83 = 13(mod 5), since 83-13=70 isdivisible by 5.
Example: Prove that the relation “congruence modulo m” over the set of positive integers is an
equivalence relation.

Solution: Let N be the set of all positive integers and m be a positive integer. We define the
relation ”congruence modulo m” on N asfollows:

Letx,y eN.x =y (mod m) if and only if x — yisdivisible by m.
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Letx,y,zeN. Then

@i).x—x=0m

=>x =x (mod m) for al x eN

(ii). Let x =y (mod m). Then, x — yisdivisible by m.
> —(x—y)=y—xisdivisbleby m.
i.e,y=x(modm)

.. Therelation = is symmetric.

>x—yandy —z aredivisbleby m. Now (x —y) + (y — 2) isdivisibleby m. i.e.,, x — zis
divisible by m.

=x =z (mod m)

. Therelation = istransitive.

Sincetherelation = isreflexive, symmetric and transitive, the relation congruence modulo misan
equivalence relation.

Example: Let R denote a relation on the set of ordered pairs of positive integers such that (x,y)R(u,
V) iff xv = yu. Show that Ris an equivalence relation.

Solution: Let R denote a relation on the set of ordered pairs of positive integers.
Let X, y, uand v be positive integers. Given (X, Y)R(u, v) if and only if xv = yu.
(). Sincexy = yxistruefor all positive integers

= (X, Y)R(X, y), for al ordered pairs (x, y) of positive integers.
. Therelation Risreflexive. (ii). Let (x, Y)R(u, V)

>XV=YU > YU

= XV =2 Uy = VX

= (U, VR(X, Y)

.. Thereation Ris symmetric.

(iii). Let x, y, u, v, mand n be positive integers
Let (X, Y)R(u, v) and (u, V)R(m, n)

= Xv=yuandun=vm

= Xvun = yuvm

=Xn =ym, by canceling uv
= (X, y)R(m, n)

.. Therelation Ris transitive.

Since Risreflexive, symmetric and transitive, hence the relation Ris an
equivalence relation.
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Compatibility Relations

Definition: A relation Rin X is said to be acompatibility relation if it is reflexive and symmetric.
Clearly, al equivalence relations are compatibility relations. A compatibility relation is sometimes
denoted by ~.

Example: Let X ={ball, bed, dog, let, egg}, and let the relation R be given by

R={(x, y)| x, y € X A xRy if x and y contain some common |etter}.

Then Risacompatibility relation, and x, y are called compatible if xRy.
Note: ball~bed, bed~egg. But ball~egg. Thus~ is not transitive.

Denoting ”ball” by X1, ”’bed” by Xo, “dog” by X3, ”let” by X4, and ’egg” by Xs, the graph of = is
given asfollows:

Maximal Compatibility Block:
Let X be aset and =~ acompatibility relation on X. A subset A € Xis called amaximal

compatibility block if any element of A iscompatible to every other element of A and no element
of X — Aliscompatibleto al the elements of A.

Example: The subsets {x1, X2, Xa}, {X2, X3, X5}, {X2, X4, X5}, {X1, X4, X5} are maximal compatibility
blocks.

Example: Let the compatibility relation on a set {x1, X2, ..., Xg} be given by the matrix:

x21
3l 1
x0 0 1
x0 O 1 1
w1 0 1 0 1
X1 X2 X3 X4 X5
Draw the graph and find the maximal compatibility blocks of the relation.

Solution: Xy

The maximal compatibility blocks are {x1, xo, X3} ,{Sk‘l, X3, X6} {X3, X5, X6},{X3, X4, X5}.
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Composition of Binary Relations
Let Rbearelation from Xto Y and She ardation from Y to Z. Then arelation writtenas R~ S

is called acomposite relation of Rand Swhere RoS = { (X, 2)| x € X, z € Z, and there exists y €
Y with (x, y) e Rand (y, 2) €S}.

Theorem: If Risrdation from Ato B, Sisarelation from Bto C and T isardation from Cto D
thenTe (S°R)=(T°S)°R

Example: Let R={(1, 2), (3, 4), (2, 2)} and S={(4, 2), (2, 5), (3, 1), (1, 3)}. Find R
©S, SR, R°(S°R),(R°S)°R,R°R,S>S,and (R°R)°R.
Solution: Given R={(L, 2), (3, 4), (2, 2)} and S={(4, 2), (2, 5), (3, 1), (L, 3)}.

R-S={(15),(3,2), (2 5)}

SeR={(4,2),(3,2),(L 4} RS

(R-9-R={(3 2)}

Re(S°R)={(3,2}=(R°S)°R

R-R={(1,2),(2 2)

ReR°S={(4,5), (3 3), (1 1}

Example: Let A={a, b, c}, and R and Sbe relations on A whose matrices are as
given below:

101 100
Mr=|0 1 O|andMs=|1 0 1
111 011

Find the compositerelationsR°> S S¢ R, R° R, Sc Sand their matrices.
Solution:
R={(a a), (a ), (b, a), (b, b), (b, ), (c, b)}
S={(a, a), (b, b), (b, ¢), (c, @), (c, ¢)}. From these, we find that
R-S={(a a), (a, c), b, a), (b, b), (b, c), (c, b), (c, )}
S°R={(a a), (a c), (b, b), (b, a), (b, c), (c, a), (c, b), (c, c)}
R-R=R°= {(& a), (& ¢), (a, b), (b, a), (b, c), (b, b), (c, a), (c, b),

(c,0)}S-S= &= {(a a), (b, b), (b, ¢), (b, &), (c, a), (c, c)}.

The matrices of the above composite relations are as given

below:
101 101 111
Mros= |0 1 1[;Msor=[1 1 1|;Mpor=|1 1 1|;
111 111 111
100
Msos=|1 0 1
111
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Transgtive Closure

Let X be any finite set and Rbe arelation in X. Therelation R = RoRzoR3 =4
in X iscalled the transitive closure of Rin X.
Example: Let therelation R={(1, 2), (2, 3), (3, 3)} ontheset {1, 2, 3}. What is the transitive closure of
R?
Solution: Giventhat R={(1, 2), (2, 3), (3, 3)}.
Thetransitive closure of RisR' =R UR2 UR3 u---=
, R={(1, 2), (2, 3), (3, 3)}
R'=R-R={(1,2),(23),3,3)/°{(12),(223), 33} ={(173),
(2,3), (3, 3)}
RP=R*-R={(L 3), (2 3), (3 3)}
R'=R°-R={(1,3), (2, 3), 3, 3))
R =RuRP urRPuR'v..
={(1, 2), (2, 3), (3, 3)} u{(1, 3), (2,3), (3,3)} v{(1,3),(2,3), (3, 3)} U...
={(1,2), (1, 3), (2, 3), (3, 3)}-.
Therefore R ={(1, 2), (1, 3), (2, 3), (3, 3)}.
Example: Let X ={1, 2, 3, 4} and R={(1, 2), (2, 3), (3, 4)} bearelation on X. Find R
Solution: Given R={(1, 2), (2, 3), (3, 4)}

R ={(19), (2 4}

3
R4 ={(1, 49}
R ={(1, 4}
R = {(1,2),(2,3),(3,4),(1,3), (2,9, (1, 4}.
Partial Ordering
A binary relation Rin aset P iscalled apartial order relation or apartial ordering in P iff Ris
reflexive, antisymmetric, and transitive. i.e.,

e aRafordlaeP
e aRbandbRa=a=b

e aRbandbRc = aRc

A set P together with apartial ordering Ris called a partial ordered set or poset. Therelation Ris
often denoted by the symbol <which is diff erent from the usual less than equal to symbol. Thus, if
<isapartia order in P, then the ordered pair (P, <) is called a poset.

Example: Show that the relation “greater than or equal to” is a partial ordering on the set of
integers.

Solution: Let Z be the set of al integers and the relation R :’2'

(). Since a>afor every integer a, therelation ' 2' isreflexive.
(i1). Let a and b be any two integers.

LetaRbandbRa=a>bandb>a
a=b

- Therelation 2' is antisymmetric. (iii).
Let a, b and ¢ be any three integers.
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LetaRbandbRc =a>bandb>c
>a>c
.. Therelation ' 2' istransitive.

Since the relation 2' isreflexive, antisymmetric and transitive, ' 2’ is partial ordering on the set of
integers. Therefore, (Z, >) is a poset.

Example: Show that the inclusion Sisapartial ordering on the set power set of aset S
Solution: Since (i). A €Afordl A €S cisreflexive.
(i). Ac€Band B £A = A= B, Sisantisymmetric.
(ii).AcBand B £€C = A £C, Cistransitive.
Thus, therelation Sisapartial ordering on the power set of S
Example: Show that the divisibility relation I'is apartial ordering on the set of positive integers.
Solution: Let Z* be the set of positive integers.
Since (i). a/afor dl a €Z+, [ isreflexive.

(i). a/b and b/a = a = b, / is antisymmetric.
(iii). a/b and b/c = alc, / istransitive.
It followsthat / is a partial ordering on Z" and (Z+, /) is aposet.

Note: On the set of al integers, the above relation is not a partial order as a and —a both divide
each other, but a = —a. i.e, therdation is not antisymmetric. Definition: Let (P, <) be apartialy

ordered set. If for every X, y € P we have either x <y Vy <x, then <iscaled asimple ordering or

linear ordering on P, and (P, <) iscalled atotally ordered or ssmply ordered set or a chain.
Note: It is not necessary to have x <y or y <xfor every x and y in aposet P . In fact, x may not be
related to y, in which case we say that x and y are incomparable. Examples:

(i). The poset (Z, <) isatotally ordered.

Sincea < b or b <awhenever a and b areintegers.

(i). The divisibility relation / is a partial ordering on the set of positive integers.
Therefore (Z+, /) is a poset and it is not a totally ordered, since it contain elements that are
incomparable, suchas5 and 7, 3 and 5.

Definition: In a poset (P, <), an element y € P is said to cover an element x e P if x < y and if
there does not exist any element z e P suchthat x <z andz <y, that is, y coversx < (x<yA(X<z

<y=3X=zVvz=y)).

Hasse Diagrams
A partial order <on aset P can be represented by means of a diagram known as Hasse diagram of
(P, ). In such adiagram,

(). Each element is represented by a small circle or dot.

(i1). The circle for x € P is drawn below the circle for y e P if x <y, and aline is drawn

between x and y if y covers x.
(iii). If x < y but y does not cover x, then x and y are not connected directly by asingle line.
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Note: For totally ordered set (P, <), the Hasse diagram consists of circles one below the other. The
poset is called achain.

Example: Let P = {1, 2, 3, 4, 5} and < be the relation ”less than or equal to” then the Hasse
diagramis:

Itisatotally ordered set.

Example: Let X ={2, 3, 6, 12, 24, 36}, and the relation < be such that x <y if x dividesy. Draw the
Hasse diagram of (X, <). Solution: The Hasse diagram is is shown below:

e 8

It is not atotal order set.

Example: Draw the Hasse diagram for therelation Ron A ={1, 2, 3, 4, 5} whose relation matrix
given below:

10111
01111
00111
MR=
00010
0 0001

Solution:
R={(1,21),(173),(1,4),(1,5),(2 2),(23),(2,4),(2,5),(3,3), (3,4, (3,5), (4, 4, (55).

Hasse diagram for Mris

i 5
3™
* 3
www.Jntufastupdates.com 13
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Example: A partial order Rontheset A= {1, 2, 3, 4} isrepresented by the following digraph.
Draw the Hasse diagram for R.

e . 3
(12} — 2)
A \

~
~
\‘-.
™~
™~
~
\‘-.
~
» S £y "y
(2 3| (4]}

Solution: By examining the given digraph , we find that
R={(1 1), (1 2),(1,3),(1,4),(22),(24), 3 3), (4 4}
We check that Risreflexive, transitive and antisymmetric. Therefore, Ris partial order relation
onA.
The hasse diagram of R is shown below:

1

Example: Let A be afinite set and p(A) beits power set. Let < betheinclusion relation on the
elements of p(A). Draw the Hasse diagram of p(A), <) for

« A={g}
e A={a b}.
Solution: (i). Let A={a}
p(A) = {9, a}
Hasse diagram of (p(A), ) isshowninFig: | A={a}
o o
(if). Let A={a, b}. p(A) = {9, {a}, {b}, {a, b}}.
The Hasse diagram for (p(A), €) isshown infig:
(a, b} (a, b}
{a} , [0} {b) » {a)

Example: Draw the Hasse diagram for the partial ordering < on the power set P (S) where S={a,

b, c}.
Solution: S={a, b, c}.
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P (S ={¢ {a}. (b}, {c}, {a b} {a ¢}, {b c} {aDb,c}}.
Hasse diagram for the partial ordered set is shown in fig:

A={a b c}
(@ o a6l ot v
(@, )] eid

Example: Draw the Hasse diagram representing the positive divisions of 36 (i.e., D3e).

Solution: We have D3g ={1, 2, 3, 4, 6, 9, 12, 18, 36} if and only a divides b. The Hasse diagram
for Risshown in Fig.

Minimal and Maximal eements(members): Let (P, <) denote a partially or-dered set. An
elementy e Piscaled aminimal member of P relativeto <if fornox eP,isx<y.

Similarly an element y € P is called amaxima member of P relative to the partial ordering < if

fornox eP,isy<x.

Note:
(). The minimal and maximal members of a partially ordered set need not unique.
(if). Maximal and minimal elements are easily calculated from the Hasse diagram.
They are the 'top' and 'bottom’ elements in the diagram.

Example:

3 =

In the Hasse diagram, there are two maximal elements and two minimal elements.
The elements 3, 5 are maximal and the elements 1 and 6 are minimal.
Example: Let A={a, b, c, d, €} and let the partial Pat
order on Ain the natural way. 7N
The element ais maximal.
The elements d and e are minimal. Nz

d

-

Upper and Lower Bounds: Let (P, <) be apartially ordered set and let A €P . Any element x e P
is called an upper bound for A if for all a € A, a < x. Similarly, any element x € P is caled a
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lower bound for A if for al a e A, x <a. Example: A ={1, 2, 3, ..., 6} be ordered as pictured in

figure. » s

A~

6
If B ={4, 5} then the upper bounds of B are 1, 2, 3. The lower bound of B is6.
Least Upper Bound and Greatest Lower Bound:
Let (P, <) be a partial ordered set and let A € P . An element x € P is a least upper bound or
supremum for A if x is an upper bound for A and x < y where y is any upper bound for A.
Similarly, the the greatest lower bound or in mumfor Aisan element x € P such that x is alower

bound and y <x for dl lower boundsy.
Example: Find the great lower bound and the least upper bound of {b, d, g}, if they exist in the
poset shown in fig:

) -
L ] o
e i

Solution: The upper bounds of {b, d, g} are g and h. Since g < h, g isthe least upper bound. The
lower bounds of {b, d, g} area and b. Sincea < b, b isthe greatest lower bound.

Example: Let A={a, b, ¢, d, e f, g, h} denote a partialy ordered set whose Hasse diagram is
shown in Fig:

g )

If B={c, d, €} thenf, g, hare upper bounds of B. a«_ »e
The element f is least upper bound. Nz

" o

Example: Consider the poset A={1, 2, 3, 4, 5, 6, 7, 8} whose Hasse diagram is shown in Fig and
let B={3, 4, 5} “

The elements 1, 2, 3 are lower bounds of B. J~ 3
3isgreatest lower bound.
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Functions
A function isa special case of relation.
Definition: Let X and Y be any two sets. A relation f from X to Yiscalled afunction if for every x

e X, thereisaunique element y €Y such that (X, y) €f. Note: The definition of function requires

that a relation must satisfies two additional conditions in order to qualify as a function. These
conditions are as follows:

(i) For every x e X must be related to somey €Y, i.e., the domain of f must be X and nor merely
asubset of X.

(ii). Uniqueness, i.e., (x,y) efand (x,2) ef 2y=2z

The notationf: X — Y, means f is afunction from X toY .
Example Let X={1,2, 3}, Y={p,q, r} andf={(1, p), (2, 9), (3, 1)} then (1) =p, f(2) = q, f(3)
=r. Clearly fisafunction from Xto Y.

” ." —~
.'J I— = ‘omo\
| 9=

T;
| T ¢ |

\ 3+ Wy /

|

Domain and Range of a Function: If f: X — Y is afunctié)n, then X is called the Domain of f and
the set Y is called the codomain of f. The range of f is defined as the set of all images under f.
It is denoted by f(X) = {y| for some x in X, f(x) =y} and is called the image of X inY . The Range

fisalso denoted by Ry .

Example: If the function f is defined by f(x):x2 +1ontheset {-2, -1, 0, 1, 2}, find the range of
f.

Solution: f(=2) = (-2)°+1=5
f(-1) = (-1)°+1=2
f(0)=0+1=1
f(1)=1+1=2
f(2)=4+1=5

Therefore, the range of f ={1, 2, 5}.

Types of Functions

One-to-one(Injection): A mapping f : X — Y iscaled one-to-oneif distinct elements of X are
mapped into distinct elementsof Y, i.e., fisone-to-oneif

X1 /%2 = f(x1) F/f(X2)
or equivaently f(x1) = f(x2) = x1 = xo for xg, Xo e X.

P — f -
e
f T *__,—4*'

| 2] ‘T‘a

'. ';_.7;'_ '.’ .
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Example: f : R — Rdefined by f(x) = 3x, X € Risone-one, since
f(x1) = f(x2) = 3x1 = 3x2 = X1 = X2, VX, X2 €R.
Example: Determine whether f: Z — Z given by f(x) = x2, X € Zisaone-to-One function.

Solution: The function f : Z — Z given by f(X) = x2, X € Z is not a one-to-one function. Thisis
because both 3 and -3 have 9 as their image, which is against the definition of a one-to-one
function.

Onto(Surjection): A mappingf: X — Yiscaled ontoif therangeset Rr=Y .

If f: X — Yisonto, then each element of Y is f-image of atleast one element of X.

e, {f(x):xeX} =Y.
If fis not onto, then it is said to be into.

1 .‘ —— | B P

N e\ [ ‘1“‘__-,-'_’:-]

-1 | 1
Lo T‘ q | | | o = ¢ r

| - S - .

Bl fmme-" 7 4 =
o Y
Surjective Not Surjective

Example: f : R— R, given by f(X) = 2%, VX e Ris onto.

Bijection or One-to-One, Onto: A mapping f : X — Yis called one-to-one, onto or bijectiveiif itis
both one-to-one and onto. Such a mapping is also called a one-to-one correspondence between X

andY.

Example: Show that amapping f : R — R defined by f(x) = 2x + 1 for X e Risabijective map
fromRtoR.
Solution: Let f : R— Rdefined by f(x) = 2x + 1 for x e R. We need to prove that f isabijective

map, i.e., it is enough to provethat f is one-one and onto.

e Proof of f being one-to-one
Let x and y be any two elementsin R such that f(x) = f(y)

>2X+1=2y+1
>X=y

Thus, f(x) =f(y) =2 x=y
Thisimpliesthat f is one-to-one.
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e Proof of f being onto
Let y be any element in the codomain R
=) =y
>2X+1=y
=>X=(y-1)/2

Clearly, x = (y-1)/2e R
Thus, every element in the codomain has pre-image in the domain.
Thisimpliesthat f is onto
Hence, f is a bijective map.
I dentity function: Let X be any set and f be afunction such that f : X — X is defined by f(x) = x

for all x € X. Then, f is called the identity function or identity transformation on X. It can be

denoted by | or Iy.
Note: The identity function is both one-to-one and onto.

Let 1x(X) = Ix(y)
>X=Y
= |y isone-to-one

Iy isonto since x = Iy(x) for all x.
Composition of Functions

Letf: X— Yandg:Y — Z betwo functions. Then the composition of f and g denoted by g ° f,
isthe function from X to Z defined as

(9° (X =9(f(x)), foral xeX
Note. In the above definition it is assumed that the range of the function f is a subset of Y (the
Domain of g), i.e., Rf £Dg. g - fis called the left composition g with f.

Example Let X={1,2, 3}, Y={p,qt andZ={a, b}. Alsoletf: X — Y bef ={(1, p), (2, 9), (3,
g} andg:Y— Zbegivenby g={(p, b), (q, b)}. Find g - f. Solution: g - f={(1, b), (2, b), (3, b).

Example: Let X ={1, 2, 3} and f, g, h and s be the functions from X to X given
by
f={(1,2),(23), 3 1} 9={12),(21), (3 3}
h={(1,1), (22,3 1} s={(1.1),(22), (3 3)}
Findfef,gef,foeheog;scg;ges ses andfes.

Solution:
fog={(13),(22), 3 1}
g°f={(1,1),(23),(3,2/}~f°g
foheg=fe(hog)=7°{(12),(21),(3 1}
={(1.3),(2,2), (3 2}
s°g={(1,2,(21),33)}=g9
g°s={(12),(21), (3 3)}
SLseg=gos=(
ses={(1,1),(22),(3,3)}=s
fes={(1,2),(273), 3 1}
Thus,ses=s,fog#gof,seg=goes=gandhes=sch=h.
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Example: Let f(x) = x+ 2, g(X) =x — 2 and h(x) = 3x for x e R, where R is the set of real
numbers. Findgeof;feg;fof,geog;foh;heg,hef,andf-he-qg.
Solution: f: R— Risdefined by f(xX) =x + 2
f:R— Risdefined by g(x) =x — 2
h: R — R isdefined by h(x) = 3x
e g°fiR—R
Let x e R. Thus, we can write
(@°NH) =9(f(¥) =g(x+2) =x+2-2=X
S (9N ={(x X xR}
(fea)(®) =f(9(x)) =f(x—2) =(x—2) +2=x
~feg={x )| xR}
(feHX) =ff(X)) =f(x+2)=x+2+2=x+4
o f={(x,x+4)| x eR}
9°9)(¥) =9(@X¥)=gX—-2)=x-2-2=x-4
>gog={(x, x — 4| xeR}
(feh)(x) =f(h(x)) =f(3x) =3x + 2
Sfeh={(x 3+2)|xeR}
(h>g)(x) =h(g(x)) =h(x—2) =3(x —2) =3x — 6
Shog={(X,3x —6)| xeR}
(hef)X)=h(f(x)) =h(x+2) =3(X+2) =3x+6h°f=
{(x, 3x+6)| x eR}

(feheog)(x) =[fe(h°g)(x)
f(hog(X)=f(3x—6)=3x—6+2=3x—4

“feheg={(x 3 — 4)|x R}

Example: What is composition of functions? Let f and g be functionsfrom Rto R, where Risa

set of real numbers defined by f(x) = X% +3x+ 1 and g(x) = 2x — 3. Find the composition of
functions: i) fo fii)fogiii)gef.
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| nver se Functions

A functionf: X — Yisaid to beinvertible of itsinverse function f_1 is also function from the
range of f into X.

Theorem: A functionf : X — Yisinvertible < f is one-to-one and onto.
Example: Let X={a, b,c,d} and Y ={(1, 2,3,4} and let f : X — Y begiven by f ={(a, 1), (b, 2),
(c 2), (d, 3)}. Isf L afunction?

Solution: f = {(1, a), (2, b), (2, ©), (3, d)}. Here, 2 hastwo distinct images b and c.
Therefore, f* is not afunction.

Example: Let R be the set of real numbersand f : R — Rbegiven by f = {(x, )| x eR}. Isf *a
function?

Solution: The inverse of the given function is defined asf ' = {4, X)| x e R}.

Therefore, it is not afunction.

Theorem: If f: X — Yandg:Y— Xbesuchthatg-f=Iyandf-g=Iy, thenf and g are both

; - -1 -1

invertible. Furthermore, f “=gandg " =f.

Example: Let X ={1, 2, 3, 4} and f and g be functions from Xto X given by f = {(1, 4), (2, 1), (3,

2), (4,3)} andg={(1, 2), (2, 3), (3, 4), (4, 1)}. Provethat f and g are inverses of each other.
Solution: We check that

@-NM)=gfW)=9@=1 =ID), (F-0)D) =f(g(1)=1(2)=1=IxI).
9N =0 =9 =2 =12, (F-9)(2) =f(9(2)=1(3)=2=Ix2).
@°-NE) =0(fR) =9  =3=Ik3), (F-9)3) =f(a(3))=1(4)=3=Ix3).

(9° )4 =9(f(4)) = 9(3) =4=1x4), (fe9)4) =f(9(4) =1(1) =4=1x4).
Thus, for al x € X, (g ° f)(X) = Ix(X) and (f - g)(X) = Ix(X). Therefore g isinverse of f and f is
inverse of g.
Example: Show that the functions f(x) = X and g(x) = xll3 for x e Rareinverses of one another.
Solution: f: R— Risdefined by f(x) =x° ; f: R — Ris defined by g(x) = x"°
(- 909 =f(g09) =f(x") =x* Y =x= 1,9

i.e, (fog)(x) = Ix(X)

and (g > N(¥) = g(f(9) = g0) =xX° Y =x= 1,9

i.e., (9° N = 1x(x)

Thus, f = g_1 org= fl

i.e, fand g areinverses of one other.
***Example: f : R— Risdefined by f(xX) =ax + b, for a, b eRand a 0. Show that f is

invertible and find the inverse of f.
(i) First we shall show that f is one-to-one

Let x1, X2 € Rsuch that f(x1) = f(x2)
saxytbh=axx+b

= axy = axo
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>X1=X2
.. fisone-to-one.
e Toshow that f is onto.
Let y e R(codomain) such that y = f(x) for some x e R.

>y=ax+bhb
>ax=y—>b
=>X=(y-b)/a
Given y € R(codomain), there exists an element x = (y-b)/a € R sueh that f(x) = .
~.fisonto
=>fisinvertible and f_l(x): (x-b)/a
1

Example: Let f : R— Rbegiven by f(x) = x>~ 2 Findf ™.
(i) First we shall show that f is one-to-one

Let X1, Xo € Rsuch that f(x1) = f(xo)
3 3
>X1—2=X2o—
2> x31 = x32
>X1=X2
.. fisone-to-one.
e To show that f is onto.

:>y:x3—2

:>x3=y+2

sx= 3fy+2

Given y € R(codomain), there exists an element x = W € Rsuch that f(x) = y.
- fisonto

Sfisinvertibleand f (x) = ¥/x+ 2

Floor and Ceiling functions:
Let x be areal number, then the least integer that is not less than x is called the CEILING of x.

The CEILING of x isdenoted by I'x1.

Examples: 12.151=3, V51=3 -741=-7,T-21=-2

Let x be any rea number, then the greatest integer that does not exceed x is called the Floor of x.
The FLOOR of x is denoted by | X .

Examples:; |5.14,=5, | V5;=2, -7.6,=-8,16, =6, -3 =-3

Example: Let f and g abe functions from the positive real numbers to positive real numbers
defined by f(x) = ;2x, g(X) = 5. Calculatefogandg-°f.

Solution: f° g(x) = f(g(x)) :f(X2)=|_2X2 |

g f(x) = g(f(x))=0( 2x ))=(1 2% ))°
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Recur sive Function
Total function: Any function f : N" — Nis caled total if it is defined for every n-tuplein N,

Example: f(x, y) =x +y, which isdefined for all x, y € N and henceit isatotal function.
Partial function: If f: D — Nwhere D €N, then f is called apartial function.

Example: g(x, y) = x —y, which isdefined for only X, y € N which satisfy x > .
Hence g(x, y) is partial.
Initial functions:
Theinitial functions over the set of natural numbersis given by
e Zerofunction Z: Z(x) =0, for al x.
e Successor function S §xX) =x + 1, for al x.
e Projection function Uin: Uin(xl, X2, ..., Xn) = X; for al ntuples (xg, X2, ..., Xn), 1 <
i<n.
Projection function is also called generalized identity function.

For example, |J i(x) =x for every x e N isthe identity function.,

2 3 3 3
U.,xy=xU,269=2,269=6,(269=09.
Composition of functions of morethan onevariable:
The operation of composition will be used to generate the other function.

Let f1(x, y), fo(X, y) and g(x, y) be any three functions. Then the composition of g with f; and fo is
defined as afunction h(x, y) given by

h(x, y) = a(fa(x, y), fa(x, y)).
In generad, let f1, fp, ..., fn €@ach be partial function of m variables and g be a partial function of n
variables. Then the composition of g with fq, fp, ..., f produces a partial function h given by
h(x1, X2, ..., Xm) = 9(f1(X1, X2, ..., Xm), ..., fn(X1, X2, ...Xm)).
Note: The function histotal iff f1, fo, ..., f and g are total.
Example: Let f1(x, y) =x+vy, fo(X, y) = xy + y2 and g(x, y) = xy. Then
h(x, y) = g(f1(x, y), fa(x, y))
= gx+y, Xy +y
= (x+Y)(y +Y)

Recursion: The following operation which defines a function f(xy, Xo, ..., Xn, y) of n + 1 variables

by using other functions g(x1, X2, .., Xn) and h(xy, X2, ..., Xn, ¥, 2) of n and n + 2 variables,
respectively, is called recursion.
f(xq, X2, ..., Xn, 0) = g(X1, X2, ..., Xn)
f(X1, X2, <oy Xn, Y+ 1) = (X1, X2, ..., Xn, Y, (X1, X2, -y X0, V)
wherey is theinductive variable.

Primitive Recursive: A function f is said to be Primitive recursive iff it can be obtained from the
initial functions by afinite number of operations of composition and recursion.

***Example: Show that the function f(x, y) = X + y is primitive recursive. Hence compute the
value of f(2, 4).
Solution: Given that f(x, y) =x +.
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Here, f(x, y) isafunction of two variables. If we want f to be defined by recursion, we
need afunction g of single variable and a function h of three variables. Now,

fx,y+1)=x+(y+1)
=(x+y)+1
= f(x,y) + 1.

Also, f(x, 0) = x.
We definef(x, 0) as
fx, 0) =x=J ,
= Sf(x, y))
=S(U (% ¥ fx y)
If wetakeg(x) = Ull(x) andh(x,y, 2 = S(U33(x, Y, 2)), we get f(x, 0) = g(x) and f(x, y + 1) =
h(x, y, 2).
Thus, f is obtained from theinitial functions U 11, U33, and Shby applying composition once and
recursion once.
Hencef is primitive recursive.
Here,
f(2,0)=2
f(2, 4) = S(f(2, 3))
=3§(f(2, 2)))
=3SEf(2, 1))
=SSSSf(2 0)))))
=3SS52))))
=SSS3)))
=3S4))
=(5)
=6
Example: Show that f(X, y) = X *y is primitive recursion.

Solution: Given that f(x, y) =X V.
Here, f(X, y) isafunction of two variables. If we want f to be defined by recursion, we
need afunction g of single variable and afunction h of three variables. Now, f(x, 0) = 0
and

f, y+1)=x*(y+1)=x=y
o f(X,y) +X

We can write
f(x, 0) = 0=2(x) and
flx, y + 1) = (U3 (%, , 7%, ), Ur°(, ¥, f(x, 1))
wherefi(X, y) = x +y, which is primitive recursive. By taking g(x) = Z(x) = 0 and h defined by
h(x,y, 2 = f1(U33(x, Y, 2), U13(x, Yy, 2)) =f(x, y + 1), we see that f defined by recursion. Since g
and h are primitive recursive, f is primitive recursive. Example: Show that f(x, y) = ¥ is primitive
recursive function. Solution: Note that x0 = 1for x =0 and we put x0 =0forx=0.
Also, = ax
Heref(x,y) = % is defined as
f(x, 0) =1 =50) = JZ(x))
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fx y+1)=x+f(x,y)

o Ur(x v, f(x, ¥)) *Us’(x, Y. f(x,Y))
h(x, y, f(x, y) = f1(U 13(x, y, f(x, y)), U33(x, y, f(X, y))) where f1(X, y) = x *y, which is
primitive recursive.
- f(x, y) isaprimitive recursive function.

Example: Consider the following recursive function definition: If x < ythen f(x, y) =0, if y <x
then f(x, y) =f(x — vy, y) + 1. Find the value of f(4, 7), f(19, 6).
O;x<y

Solution: Given f(X, Y) :{f(x_y,y)ﬂ;yq

f(4,77=0 [.4<T]
f(19,6) =f(19-6,6) + 1
=f(13,6) +1
f(13,6) =f(13-6,6) + 1
=f(7,6) + 1
f(7,6)=f(7—-6,6) +1
=f(1,6)+1
=0+1
=1
f(13,6) =f(7,6) + 1
=1+1
=2
f(19,6)=2+1
=3
Example: Consider the following recursive function definition: If x < y then f(x, y) =0, if y <x
then f(x, y) = f(x — vy, y) + 1. Find the value of f(86, 17)

Per mutation Functions
Definition: A permutation is a one-one mapping of a non-empty set onto itself.

Let S={a1, ay, ..., an} be afinite set and p is a permutation on S, we list the elements of Sand
the corresponding functional values of p(az), p(ap), ..., p(an) in the following form:

[al a, : an)
p(a) p@) - . . p@,)

If p: S— Sisabijection, then the number of elementsin the given set is called the degree of its
permutation.

Note: For aset with three elements, we have 3! permutations.

Example: Let S={1, 2, 3}. The permutations of Sare as follows:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
P1= ; Po= ; Pa= ; Pa= ; Ps= ; Pe=
1 2 3 2 1 3 2 31 321 312 1 3 2

Example: Let S={1, 2, 3,4} andp: S— Shbhegiven by f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3. Write
thisin permutation notation.
Solution: The function can be written in permutation notation as given below:
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. 1 2 3 4
2143
I dentity Permutation: If each element of a permutation be replaced by itself, then such a
permutation is called the identity per mutation.

a, .. a
Example: Let S={ay, ap, , an}.then I:(: a2 ”j isthe identity permutation on S

, e A,
Equality of Permutations: Two permutations f and g of degree n are said to be equal if and only

if fa)=g(a) foral aeS

Example: Let S={1, 2, 3, 4}
f_1234__4132
1312454321
We have f(1)=9g(1) =3
f?=09(2=1
f(3)=0(3) =2
f(4) = g(4) = 4
i.e., f(a)=g(a) foradl aeS
Product of Permutations. (or Composition of Permutations)
(a b...h] [a b...h]
Let S={a,b,...h}and let 0=
f(@ fb) .. f(h) g(@ g ... g(h)

We define the composite of f and g asfollows:

(a b...hj(a b...h]
fog: 0

f@ fm .. f(h)) {g@ g .. gh

:( a b h j
f(g(@) f(ab) ... f(a(h)

Clearly, f - g isa permutation.

1 2 3 4 1 2 3 4
Example: Let S={1, 2, 3,4} and let f = andg= Findfegandg-
21 4 3 4 1 2 3

f in the permutation from.

_ 12 3 4 12 34
Solution: fo g = 30 41 ;gole 3 4 2

Note: The product of two permutations of degree n need not be commutative.
I nver se of a Permutation:

. . _ B T P PP
If fisapermutation on S={ay, ap, , an} suchthat f =

b, b, ... b,

then there exists a permutation called the inverse f, denoted f ~suchthat fof *=f 1o /=
| (the identity permutation on S)
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e fa_(B B by
a, a, a,

1 4 . 1 -
Example: If f:(2 1],thenfindf 1 and show that fof T =f Lof=1

) 1_(2 4 3 1 1 2 3 4
Solution: f = = 1 =

L2 3 4 2 3 a2 3 4
2 4 3 1Jl4 1 3 22 2 3 a4
similaly, f tof=l.sfof t=f Loz,

Cyclic Permutation: Let S={ay, ay, ..., an} be afinite set of n symbols. A permutation f defined
on Sis said to be cyclic permutation if f is defined such that

f(ay) = ap, f(ap) = ag, ...., f(a,—1) = ap and f(an) = as.
Example: Let S={1, 2, 3, 4}.

1 2 3 4

Then =(1 4)(2 3) isacyclic permutation.
(4 3 ) J( )(23) yclic p

Digoint Cyclic Permutations: Let S={a1, ay, ..., an}. If f and g are two cycles on Ssuch that
they have no common elements, then f and g are said to be digjoint cycles.

Example: Let S={1, 2, 3, 4, 5, 6}.
If f=(145)andg=(236)thenfand g aredigoint cyclic permutationson S

Note: The product of two digoint cyclesis commutative.

. _ 1 2 3 4 5 6 7
Example: Consider the permutation f =
2 3 4 5 1 7 6

The above permutation f can be written asf = (1 2 34 5)(6 7). Which is a product of two digoint
cycles.

Transposition: A cyclic of length 2 is called a transposition.
Note: Every cyclic permutation is the product of transpositions.

2 3 4 5] =(124)(35)=(14)(12)(35).

1
Example: f =
2 4 5 1 3

Inverse of a Cyclic Permutation: To find the inverse of any cyclic permutation, we write its

elementsin the reverse order.
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For example, (1234) 1= (4321).
Even and Odd Permutations. A permutation f is said to be an even permutation if f can be
expressed as the product of even number of transpositions.
A permutation f is said to be an odd permutation if f is expressed as the product of odd nhumber of
transpositions.
Note:

(i) Anidentity permutation is considered as an even permutation.

(i) A transposition is always odd.

(iii). The product of an even and an odd permutation is odd. Similarly the product of an

odd permutation and even permutations is odd.

Example: Determine whether the following permutations are even or odd permutations.
1 2 3 4 5
(i) f=
2 4 3 1 5
ii)g=
e (2 5 7 8 6 1 4 3

(i) h= (1 2 3 4 5}
4 3 1 2 5

1
Solution: (i). For f = [2

N
w
N

gzazgzuqua

= f isan even permutation
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G > 3 4 5 6 7 8
i.Forg=l, 5 7 g 6 1 4 3

=(1256)(3748)=(16)(15)(12)(38)(34)(37)
= gisan even permutation.

(1 2 3 4 5\ B
(|||)h—(4 c 1 5}(1423)_(13)(12)(14)

Product of three transpositions

= h isan odd permutation.
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L attices
In this section, we introduce lattices which have important applications in the theory and design

of computers.

Definition: A latticeisa partially ordered set (L, <) in which every pair of elementsa, b €L has
agreatest lower bound and aleast upper bound.

Example: Let Z" denote the set of all positive integers and let R denote the relation *division’ in

Z", such that for any two elementsa, b € Z, aRb, if a dividesb. Then (Z', R) isalatticein
which the join of a and b isthe least common multiple of aand b, i.e.
avb=a&b=LCM of aandb,

and themeet of aand b, i.e. a b isthe greatest common divisor (GCD) of aand bi.e.,
aAb=a~+b=GCD of aandb.
We can aso writeat+b = ab = aghb=LCM of aand b and a.b = anb = a-b=GCD of a and b.

Example: Let n be apositive integer and S, be the set of al divisors of n If n =30, S30 ={1, 2,

3, 5, 6, 10, 15, 30}. Let R denote the relation division as defined in Example 1. Then (Sgo, R) is
alatticesee Fig:

1
Example: Let A be any set and P (A) be its power set. The poset P (A), €) isalattice in which the

meet and join are the same as the operations N and U on sets respectively.
S={a}, P(A) = {4, {a}}
¢ A={a

o 0

S={a b}, P(A) ={9, {a}, {a}, S}.
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Some Properties of Lattice
Let (L, <) bealattice and *and & denote the two binary operation meet and join on (L, <). Then

forany a, b, c L, we have
(L1): aa=4a, (L1)': aga= a(ldempotent laws)
(L2): bra=b=, (L2)' : a @b =b+ a(Commutative laws)
(L3) : (ah)rc = axb=), (L3) : (agb)@c = ad(b + ¢) (Associative |aws)
(L4) :axa+hb) = a,(L4)’ : ad(a*) = a (Absorption laws).
The above properties (L1) to (L4) can be proved ea)sily by,usi ng definitions of meet and
join. We can apply the principle of duality and obtain (L1) to (L4).
Theorem: Let (L, <) be a lattice in which * and @ denote the operations of meet and join
respectively. Forany a, eL,a <b ca*b=a<a®b=h.

Proof: We shall first provethata<b <a *b=h.
In order to do this, let us assumethat a < b. Also, we know that a < a.

Thereforea <a *b. From the definition of a *b, wehavea *b <a.
Hencea<b sa+*b=a.

Next, assumethat a *b = a; but it isonly possibleif a<b, thatis,a *b=a =a<b.
Combining these two results, we get the required equivalence.
Itispossibleto show that a<b < a @b =binasmilar manner.

Alternatively, from a b = a, we have
bo(@a*b)=bpa=aeb
but b@(a*b)=b

Hencea & b =bfollowsfroma *b=a.
By repeating similar steps, we can show that a *b = a followsfroma @b =b.
Thereforea <b a+b=aca@b=h.
a*b<a*c
a®b<ad®c
Proof: By abovetheorema<b ca*b=a<a@b=h.

To show that a *b <a ¢, we shall show that (a *b) *(a *c) =a *b

Theorem: Let (L, <) bealattice. Then b<c= {

(a*b) r(a*c)=a (b *a) »c
=za~*(a=*h) ~c
=(a~*a) *(b *c)
=a~*(b *C)
=a+*b
~Ifb<cthenaxb<axcNext,leeb<c=b@c=c.
To show that a @ b <a & c. It sufficient to show that (a @ b) @ (a@c)=a &c.
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Consider,(a @b) @(a@c)=a@ (b @a) &c
—a@(adb) @c
=(aga) @bec
—a@(bec)
—a®b

~Ifb<cthena@b<a@ec.

Note: The above properties of a Lattice are called properties of Isotonicity.
L attice as an algebraic system:
We now define lattice as an algebraic system, so that we can apply many concepts
associated with algebraic systems to lattices.

Definition: A latticeis an agebraic system (L, *,) with two binary operation ‘*’and ‘&’ on L
which are both commutative and associative and satisfy absorption laws.

Bounded L attice:
A bounded lattice is an algebraic structure (L,A,v,0,1) suchathat (L,A,v) isalattice, and the

constants 0,1< L satisfy the following:
1. for all xe L, xAl=x and xv1=1

2. for al xe L, xA0=0 and xv0=x.

The element 1 is called the upper bound, or top of L and the element O is called the lower bound
or bottom of L.
Distributive lattice:

A lattice (L,v,A) isdistributiveif the following additional identity holdsfor all x, y, and zin L:
XA(YVZ2=XAY)V(XA2

Viewing lattices as partially ordered sets, this says that the meet peration preserves nonempty

finitejoins. It isabasic fact of lattice theory that the above condition is equivalent to its dua
XVYAZD=XXVY)A(xVz fordlxy andzinL.

Example: Show that the following simple but significant lattices are not distributive.

il ] 1

//EL ____.-"a

P \\-.x 1
||< |.i :_'“l--: IL i

ol wh

HH"HH'
Solution @) To see that the diamond lattice is not distributive, use the middle elements of the
lattice:an(bvc)=anl=abut(anb)v(anc)=0v 0=0,anda0.

Similarly, the other distributive law fails for these three elements.
b) The pentagon lattice is also not distributive
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Example: Show that lattice is not a distributive lattice.

r]

.I 1
o
i#

Sol. A latticeisdistributive if al of its elements follow distributive property so let we verify the
distributive property between the elements n, | and m.
GLB(n, LUB(l, m)) = GLB(n, p) [~ LUB(l, m) =p]

=n(LHYS)
also LUB(GLB(n, 1), GLB(n, m)) = LUB(o, n); [~ GLB(n, |) =0 and GLB(n, m) =n]
=n(RHS)

so LHS =RHS.

But GLB(m, LUB(l, n)) = GLB(m, p) [~ LUB(I, n) = p]
=m(LHS)
also LUB(GLB(m, I), GLB(m, n)) = LUB(o, n); [~ GLB(m, I) =0 and GLB(m, n) =n]
=n(RHY)

Thus, LHS # RHS hence distributive property doesn’t hold by the lattice so lattice is not
distributive.

Example: Consider the poset (X, <) where X ={1, 2, 3, 5, 30} and the partial ordered relation <
isdefined asi.e. if x and y eX then x <y means ‘x divides y’. Then show that poset (I+, <) isa
lattice.

Sol. Since GLB(X, y) =x A y=lcm(x, y)

and LUB(X, y) =xV y=gcd(X, y)

Now we can construct the operation table | and table 11 for GLB and LUB respectively and the
Hasse diagram is shown in Fig.

Table 1 Taokle I1
|II-: HE 2 T “H 2 T =T
BT I3 N R B
2 -1 2 | 30 | 30 | 30 F 1 . 1 1 i
3 a 320 = | 1] a0 3 1 1 a 1 3
5 5 |an [am | & | 30 5 y i i P K
T b [ 30 am | &0 i1} [ A i [ 2] a % 51 [
Test for distributive lattice, i.e.,
GLB(x, LUB(Y, 2)) = LUB(GLB(X, y), GLB(X, 2))
Assumex=2,y=3and z=5, then
RHS GLB(2, LUB(3, 5)) = GLB(2, 30) = 2
LHS LUB(GLB(2, 3), GLB(2,5)) =LUB(1,1) =1
SinceRHS # LHS, hence lattice is not a distributive lattice.
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Complemented lattice:

A complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in
which every element a has a complement, i.e. an element b satisfyingav b=1andaA b=0.
Complements need not be unique.

Example: Lattices shown in Fig (a), (b) and (c) are complemented | attices.

] 1
Y o Y / \
/"”\ AN /
u.f“‘-/ " ) P.I/’ \ / \
s W L ~ - ) 3
" O a0 Qe Ob

(1) (H) ()
Sol.

For the lattice (a) GLB(a, b) = 0 and LUB(X, y) = 1. So, the complement ais b and vise versa.
Hence, a complement lattice.

For the lattice (b) GLB(a, b) =0 and GLB(c, b) =0and LUB(a, b) =1 and LUB(c, b) = 1; so
both a and ¢ are complement of b.
Hence, a complement lattice.

In the lattice (c) GLB(a, ¢) = 0 and LUB(a, ¢) = 1; GLB(a, b) = 0 and LUB(a, b) = 1. So,
complement of aareb and c.

Similarly complement of c area and b also a and ¢ are complement of b.

Hence lattice is a complement lattice.

Previous Questions
1. 8) Let R bethe Relation R={(x,y)/ x dividesy )} . Draw the Hasse diagram?
b) Explain in brief about lattice?
c) Define Relation? List out the Operations on Relations
2. Define Relation? List out the Properties of Binary operations?
3. Let the Relation R be R={(1,2) ,(2,3),(3,3)} ontheset A={1,2,3}. What isthe Transitive
Closure of R?

4. Explain in brief about Inversive and Recursive functions with examples?

5. Prove that (S, <) is a Lattice, where S= {1,2,5,10} and < is for divisibility. Prove that it is also
aDistributive Lattice?

6. Prove that (S,<) is a Lattice, where S= {1,2,3,6} and < is for divisibility. Prove that it is also a
Distributive Lattice?

7. Let A beagiven finite set and P(A) its power set. Let — be the inclusion relation on the
elements of P(A). Draw Hasse diagrams of (P(A), <) for A={a}; A={ab}; A={ab,c} and
A={ab.c.d}.

8. Let Fx bethe set of all one-to-one onto mappings from X onto X, where X={1,2,3}. Find all
the elements of Fx and find the inverse of each element.

9. Show that the function f(x) = x+y is primitive recursive.

10. Let X={2,3,6,12,24,36) and arelation <’ be such that x< if x dividesy. Draw the Hasse

diagram of (x,<).

11.1f A={1,2,3,4} and P={{1,2} {3} ,{4}} isapartition of A, find the equivalence relation
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determined by P.

12. Let X={1,2,3} and f, g, h and s be functions from X to X given by f={<1,2>, <2,3>, <3,1>}
0={<1,2>,<2,1>,<3,3>} h={<l,1> <2,2> <3,1>} and s={<1,1>, <2,2>, <3,3>}. Find
fog, fohog, gos, fos.

13. Let X={1,2,3,4} and R={<1,1>, <1,4>, <4,1>, <4,4>, <2,2>, <2,3>, <3,2>, <3,3>}. Write the
matrix of R and sketch its graph.

14.Let X ={ab,c,d,e} andlet C = {{ab},{c}.{d,e}}. Show that the partition C defines an
equivalence relation on X.

, {x/Z; when xiseven . ,
15.Show that the function f(x)= . is primitive recursive.
(x—1)/2;whenxisodd
16. If A={1,2,3,4} and R,Sarerelationson A defined by R={(1,2),(1,3),(2,4),(4,4)}
$={(1,1),(1,2),(1,3),(1,4),(2,3),(2,4)} findR 0 S, SO R, R?, S, write down there matrices.
17. Determine the number of positive integers n where 1<n<2000 and n is not divisible by2,3 or
5bhut isdivisible by 7.
18. Determine the number of positive integers n where 1<n<100 and n is not divisible by2,3 or 5.
19. Which elements of the poset /({2,4,5,10,12,20,25} ,/) are maximal and which are minimal?
20. Let X={(1,2,3} and f,g,h and s be functions from X to X given by f={(1,2),(2,3),(3,1)},
0={(1.2),(21),3.3)}, h={(1,1),(2,2),(3,1) and s={(1,1).(2,2),(3,3)} .

Multiple choice questions

1A Is an ordered collection of objects.
a) Relation  b) Function c) Set d) Proposition
Answer: c

2. The set O of odd positive integers less than 10 can be expressed by .
a{1,2,3 b){13579 {1,259 d{1,5,709, 11}
Answer: b

3. Power set of empty set has exactly subset.
a) One b) Two c) Zero d) Three
Answer: a

4. What is the Cartesian product of A ={1,2} and B ={a, b}?
a){(1,a), (1, b), (2 &), (b, b)} b){(L 1), (2 2), (& a), (b, b)}

0){(1, a),(2 a), (1, b), (2 b)} d){(1, 1), (a &), (2 4), (1, b)}
Answer: c
5. The Cartesian Product B x A isequal to the Cartesian product A x B. Isit True or False?
a) True b) False
Answer: b

6. What is the cardinality of the set of odd positive integers less than 10?
al0 b5 ¢3 d20

Answer: b

7. Which of the following two sets are equal?
aA={12 andB={1} b)A={1,2} andB={1, 2, 3}
cA={1,2,3tandB={2,1,3} d)A={124andB={1,2 3}
Answer: c

8. The set of positive integersis .
a) Infinite b) Finite ) Subset d) Empty
Answer: a
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9. What is the Cardinality of the Power set of the set {0, 1, 2}.
a8 b6 c7 dI9
Answer: a
10. The members of the set S={x | x isthe square of an integer and x < 100} is-----

a) {0,2,4,5,9,58,49,56,99, 12} b){0,1,4,9, 16, 25, 36, 49, 64, 81}
c){1,4,09,16, 25, 36, 64, 81, 85, 99} d) {0, 1, 4,9, 16, 25, 36, 49, 64, 121}
Answer: b

11. Let R be the relation on the set of people consisting of (a,b) where aaiis the parent of b. Let S
be the relation on the set of people consisting of (a,b) where aand b are siblings. What are SeR
and RoS?
A) (ab) where ais aparent of b and b has a sibling; (a,b) where ais the aunt or uncle of b.
B) (a,b) where aisthe parent of b and a has asibling; (a,b) where ais the aunt or uncle of b.
C) (a,b) where aisthe sibling of b's parents; (a,b) where aais b's niece or nephew.
D) (ab) where aisthe parent of b; (a,b) where ais the aunt or uncle of b.
12. On the set of al integers, let (X,y)ER(X,y)€ER iff xy>1xy>1. Is relation R reflexive,
Ssymmetric, antisymmetric, transitive?
A) Yes, No, No, Yes B) No, Yes, No, Yes
C) No, No, No, Yes D) No, Yes, Yes, Yes E) No, No, Yes, No
13. Let R be anon-empty relation on a collection of sets defined by ARB if and only if AN B
= @Then (pick the TRUE statement)

A.Risrelexive and transitive B.R is symmetric and not transitive
C.Risan equivalence relation D.Risnot relexive and not symmetric
Option: B

14. Consider the dividesrelation, m |n, ontheset A ={2,3,4,5, 6, 7, 8, 9, 10}. The cardinaity
of the covering relation for this partial order relation (i.e., the number of edgesin the Hasse
diagram) is

@4 (6 (5 (A8 (97
Anse

15. Consider the dividesrelation, m | n, ontheset A ={2, 3,4, 5, 6, 7, 8, 9, 10}. Which of the

following permutations of A is not atopological sort of this partial order relation?

@ 7,2,3,6,9,54,10,8 (b) 2,3,7,6,9,5,4,10,8
() 2,6,3,9,5,7,4,10,8 (d) 3,7,2,9,5,4,10,8,6
(e) 3,2,6,9,5,7,4,10,8

Ans.c

16.Let A ={2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16} and consider the divides relation
on A. Let C denote the length of the maximal chain, M the number of maximal elements, and
m the number of minimal elements. Which is true?
@C=3,M=8,m=6 C=4M=8m=6
(©)C=3,M=6,m=6 dC=4M=6,m=4
eC=3,M=6,m=4
Ans.a
17. What isthe smallest N > 0 such that any set of N nonnegative integers must have two distinct
integers whose sum or difference is divisible by 10007
(a) 502 (b) 520 (c) 5002 (d) 5020 (e) 52002
Ansa
18. Let R and S be binary relations on a set A. Suppose that R is reflexive, symmetric, and transitive and
that Sissymmetric, and transitive but is not reflexive. Which statement is always true for any such R
and S?
(@ RU Sissymmetric but not reflexive and not transitive.
(b) RU Sissymmetric but not reflexive.
(c) RuU Sistransitive and symmetric but not reflexive
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(d) RuU Sisreflexive and symmetric. (€) R U Sis symmetric but not transitive.
Ansd
19. Let R be arelation on aset A. Isthe transitive closure of R always equal to the transitive
closure of R*? Prove or disprove.
Solution: Suppose A ={1, 2, 3} and R={(1, 2),(2, 3)}. ThenR2 ={(1, 3)}.
Transitive closure of RisRx ={(1, 2),(2, 3),(1, 3)}.
Transitive closure of R%is{(1, 3)}.
They are not always equal.
20. Suppose R1 and R2 are transitive relations on aset A. Istherelation R1 U R2 necessariy a
transitive relation? Justify your answer.
Solution: No. {(1, 2)} and {(2, 3)} are each transitive relations, but their union
{(1, 2),(2, 3)} isnot transitive.
21. Let D3p={1, 2, 3,4, 5, 6, 10, 15, 30} and relation | be partial ordering on D3o. The all lower
bounds of 10 and 15 respectively are
A.13 B.1,5 C.1,35 D.None of these Option: B
22. Hasse diagrams are drawn for
A.partially ordered sets B.lattices C.boolean Algebra  D.none of these
Option: D
23. A sdlf-complemented, distributive latticeis called
A.Boolean algebra  B.Modular lattice C.Completelattice  D.Self dual lattice
Option: A
24. Let D30={1, 2, 3,5, 6, 10, 15, 30} and relation | be a partial ordering on D30. The lub of
10 and 15 respectively is
A.30 B.15 C.10 D.6 Option: A
25: Let X ={2, 3, 6, 12, 24}, and < be the partial order defined by X <Y if X divides Y.
Number of edgesin the Hasse diagram of (X, <) is
A3 B4 C5 D.Noneof these
Option: B
26. Principle of duality is defined as
A.<isreplaced by > B.LUB becomesGLB
C.al properties are unaltered when <isreplaced by >
D.all properties are unaltered when <isreplaced by > other than 0 and 1 element.

Option: D

27. Different partially ordered sets may be represented by the same Hasse diagram if they are
A.same B.latticeswith sameorder  C.isomorphic D.order-isomorphic
Option: D

28. The absorption law is defined as
Aa*(a*b)=b Ba*(a@b)=b Ca*(a*b)=a@bD.a*(ab)=a
Option: D
29. A partial order isdeined ontheset S={x, &, &, &,...... &, Y} asx < ai foraliand g
< yforadli,wheren >1. Number of total orders on the set S which contain partial
order <is
Al Bn Cn+2 D.n! Option: D
30. Let L beaset with arelation R which istransitive, antisymmetric and reflexive and for
any two elementsa, b € L. Let least upper bound lub (a, b) and the greatest lower
bound glb (a, b) exist. Which of the following iare TRUE ?
A.L isaPoset B.L isaboolean algebra C.L isalattice D.none of these
Option: C
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